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Long-term climate change and periodic environmental extremes threaten food and
fuel security' and global crop productivity®™*. Although molecular and adaptive
breeding strategies can buffer the effects of climatic stress and improve crop
resilience’, these approaches require sufficient knowledge of the genes that underlie
productivity and adaptation®—knowledge that has been limited to a small number of
well-studied model systems. Here we present the assembly and annotation of the
large and complex genome of the polyploid bioenergy crop switchgrass (Panicum
virgatum). Analysis of biomass and survival among 732 resequenced genotypes,

which were grown across 10 common gardens that span 1,800 km of latitude, jointly
revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass
associations were abundant but varied considerably among deeply diverged gene
pools. Furthermore, we found that gene flow accelerated climate adaptation during
the postglacial colonization of northern habitats through introgression of alleles
fromapre-adapted northern gene pool. The polyploid nature of switchgrass also
enhanced adaptive potential through the fractionation of gene function, as there was
anincreased level of heritable genetic diversity on the nondominant subgenome. In
addition to investigating patterns of climate adaptation, the genome resources and
gene-trait associations developed here provide breeders with the necessary tools to

increase switchgrass yield for the sustainable production of bioenergy.

Switchgrass (P.virgatum)is both a promising biofuel crop and animpor-
tant component of the North American tallgrass prairie. Historically,
tallgrass prairies were one of the largest temperate biomes on Earth,
and they remainimportant sinks for atmospheric carbon”®, However,
most extant natural switchgrass populations are restricted to ‘relic’
sites, whichrepresent crucial but dwindling genetic resources for the
future conservation and breeding of tallgrass prairie.

Biomass productionis the principal breeding target for switchgrass
asaforage and bioenergy crop® andis astrong proxy for seed produc-
tion and evolutionary fitness™. Since the US Department of Energy
named switchgrass a model herbaceous biofuel feedstock, biomass
yield trials have demonstrated the economic viability of switchgrass
bioenergy production, and cultivars have been bred that substantially

out-produce maize and other cellulosic feedstocks". However, individ-
ual cultivarstend to be productive across only anarrow climatic niche.
Therefore, to maximize gains, switchgrass breeding and biotechnology
should focus on developing climate-genotype matches™" through
the identification of the genomic basis of biomass accumulation and
climate adaptation in breeding panels. This will bolster future yields™*
and cement switchgrass as an economically and environmentally sus-
tainable bioenergy product.

The tetraploid switchgrass genome

Although abundant quantitative genetic variation underlies
climate-associated stress tolerance and biomass production'®, the

A list of affiliations appears at the end of the paper.
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Fig.1| The structure and evolution of the subgenomes of tetraploid
switchgrass. a, Grey polygons (representing n=>53 syntenic blocks)
demonstrate nearly complete co-linearity between subgenomes. Gene-rich
chromosome arms and highly repetitive pericentromeres are typical of grass

fragmented and incomplete nature of previous switchgrass genome
sequences have impeded the discovery of candidate genes and other
molecular breeding efforts. The genome of the AP13 switchgrass geno-
typeislarge (haploid genomessize =1,129.9 megabases (Mb)), repetitive
(56.9% repeats) (Fig. 1a, Extended Data Fig. 1) and polyploid. In contrast
tosome other outcrossing species such as maize (whichis represented
by the inbred B73 reference genome), AP13 is outbred. Its genome
retains a commensurate level of heterozygosity within the range of
naturally outcrossing populations (Extended Data Fig.1). Despite this
complexity, our deep PacBio long-read sequencing coupled with deep
short-read polishing and bacterial artificial chromosome (BAC) clone
validation produced a highly contiguous ‘v5’ AP13 genome assembly
(Extended Data Fig. 1; data are available from Phytozome at https://
phytozome-next.jgi.doe.gov). We pruned the resulting large contigs
(N5, =5.5Mb) to asingle representative haplotype, and then oriented
and ordered into chromosome pseudomolecules using the consensus
of two high-density genetic maps (Supplementary Data 1). Chromo-
somes were assigned to subgenomes via genetic distance to Panicum
rudgeii' (the sister taxa to the K subgenome of P. virgatum), and via
denovorepeat clustering. The final assembly contains only 0.4% gaps,
a75-fold decrease relative to a previous v4 release from 2016 (https://
phytozome-next.jgi.doe.gov/info/Pvirgatum_v4_1). Importantly, the
genome assembly was co-linear with three sources of genetic infor-
mation, despite being assembled independently from all three: the
assembly of a close diploid relative (Panicum hallii), the marker order
of a pseudo-F, genetic map and the gene order of the alternative sub-
genome (Fig. 1a, Extended Data Fig. 1, Supplementary Data 2). These
co-linearities demonstrated that we have developed a single haploid
assembly and annotation for each subgenome.

Crucially, we were able to distinguish gene and repeat sequences
between the two subgenomes. The gene annotation—whichis derived
fromIllumina RNA sequencing (M raries = 88, Meonditions = 18, >3 billion reads)
and PacBio Iso-Seq (N¢ongitions = 9, > 4.5 million reads, Supplementary
Data3)—encompasses 80,278 primary and 49,664 alternative transcripts
andis ascomplete as the genome assembly (BUSCO =99.4%) (Extended
DataFig.1). Weleveraged these annotations to build multiple sequence
alignments and time-scaled phylogenetic trees, which date subge-
nome-progenitor species divergence to about 6.7 million years ago
(Ma). Long-terminal repeat sequence analysis of subgenome-specific
proliferation of retrotransposons sets an upper bound of the polyploidy
event that formed switchgrass at <4.6 Ma (Fig. 1b), which indicates that
tetraploid switchgrass arose during the Pliocene, or the glacial-inter-
glacial cycles of the early Pleistocene epoch.

Climate adaptation drives biomassyield

Although there are two reproductively isolated' switchgrass cytotypes
(tetraploid (4x) and octoploid (8x)), tetraploids represent the majority
of cultivars’ and spanabroader geographical range than octoploids®.
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Toinvestigate the genetic basis of climate adaptation, stress tolerance
and biomass production, we therefore developed a diversity panel of
732 exclusively tetraploid genotypes (Supplementary Data4). We clon-
ally propagated and transplanted this panel in up to 10 common gar-
densthat spanned 1,862 km of latitude, from southern Texas to South
Dakota (USA) (11,,0s = 5,521) (Fig. 2a) and resequenced each genotype via
deep (median=59x) coverage 2 x 150-bp paired-end PCR-free Illumina
libraries. Importantly, resequencing coverage was not biased towards
either subgenome (likelihood ratio test y*=1.32, degrees of freedom =1,
P=0.25).Ourresequencing yielded 33.8 million single-nucleotide poly-
morphisms (SNPs) (minor allele frequency > 0.5%) mapped against the
genome. We also de novo-assembled a 252-genotype subset of these
deeply resequenced libraries and called presence-absence and struc-
tural variants (for example, 100-1,500-bp insertions and deletions) on
the resulting contigs. To connect trait and molecular variation with
climate, we extracted 46 climate variables?* from the georeferenced
collection location of each genotype and clustered these data into
seven groups that explained the majority of climatic variation across
the diversity panel (Extended Data Fig. 2).

Climate-associated adaptation in switchgrass has previously been
hypothesized to underscore divergence between northern upland
and southern lowland ecotypes and is exemplified by divergent leaf
and whole-plant morphologies?, In silico classification from
morphological data, coupled with ecotype assignments by experts
across our diversity panel (Supplementary Data 5), revealed upland
(n=268), lowland (n=99) and a third, coastal ecotype (n=184). The
coastal ecotype was broadly sympatric with the lowland ecotype but
displayed uplandleaf characters and lowland plant architecture (Fig. 2a,
Extended Data Fig. 2).

We observed strong evidence that adaptive evolution has contrib-
uted to ecotype divergence. Whereas winter-kill mortality was rare
among northernupland plants (2.4%), nearly half of all coastal (42.1%)
andlowland (42.8%) genotypes perished during the winter of2018-2019
acrossthe 4 northernmost gardens (Fig. 2b). Winter kill was especially
severeinthethree northwestern plainssites, probably owingtoaperiod
of severe cold from late January to early March 2019 (Extended Data
Fig.2).In total, genotypes from the northern 30% of the panel were
218x (Fisher’s test odds ratio=218.17, P<1x107) more likely to survive
the winter of 2018-2019 in the northern 4 sites than the southernmost
30% of the genotypes.

Thelatitude gradientacross our common gardensalso served asthe
major axis of biomass variation. Among the seven groups of correlated
climatic variables, the strongest predictors of biomass variation were
alwaysrelated to temperature (Extended Data Fig. 2). We observed par-
ticularly strong signals of extreme 30-year-minimum temperature as a
predictor of biomassin the winter-kill-susceptible lowland and coastal
ecotypes (Fig. 2c). For both ecotypes, genotypes collected from sites
with colder historical extreme minimum temperatures out-performed
genotypes from sites with a milder climate in the northern gardens.
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Fig.2|Climaticadaptation within and among switchgrass ecotypes.

a, Geographical distribution of common gardens (n=10) and plant collection
locations (n=700 georeferenced genotypes), and spatial distribution models
ofeachecotype. The ecotype colour legend accompanies the representative
images of each ecotype to the right of the map (images were taken at the end of
the 2019 growing season and the background was removed with Image]J
(https://imagej.nih.gov/ij)). White-outlined points (coloured by ecotype, orin
whiteif no ecotype assignment was made) indicate the georeferenced
collectionsites of the diversity panel. The labelled white circles with black
crossesindicate the locations of the 10 experimental gardens. Publicly
available culturaland physical geographical information system (GIS) layers
were accessed with the rnaturalearthdataR package®. Scale bars,1m.b, Across
thelandscape, survival (fgenorypes = 367) and winter kill (n=184) in the northern
gardens (n=3)was geographically structured: the latitude of the origin of

However, no climate-of-origin-dependent trade-off was observed in the
winter-kill-tolerant upland ecotype. It is possible that amore intensely
cold winter than that of2018-2019 could introduce differential survival
inthe upland genotypes and produce atrade-off similar to that observed
within the two more southern ecotypes. These results add support to
our observation that susceptibility to cold temperatures actsboth asan
agent of natural selection and as alimiter of northern range expansion.

Furthermore, biomass yield for each genotype was generally max-
imized in the gardens with climates that were most similar to their
collectionlocations (Fig. 2d). As such, local adaptation is manifest not
only through survival and stress tolerance, but also through higher
biomass accumulation in climates similar to those in which each
genotype evolved.

Ecotype convergence among gene pools

Knowledge of the structure and diversity of gene pools within switch-
grass is critical to projecting future gains from molecular breeding
and understanding the genetic basis of climate adaptation'>", Sev-
eral previous population genetic studies of switchgrass assumed that
there should be strong correspondence between population genetic
structure and the morphological clustering that is used to define
ecotypes®*??8, Analysis of our 33.8-million genome-wide SNP data-
baserevealed that our diversity panelis strongly subdivided into three
major genetic subpopulations that are, ingeneral, geographically dis-
tinct (which we refer to as Midwest, Atlantic and Gulf) (total Fi;=0.27)
(Fig. 3a). The clustering of presence-absence and structural variants
largely recapitulates SNP-based subpopulation structure (Extended
Data Fig. 3), providing consistent evidence of subpopulation differ-
entiation that may include large-effect mutations at several molecular
scales.
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collectionsite was predictive of survival. Alogistic regression prediction
(ts.e.) accompanies binary survival along the latitude predictor. ¢, Imputed
survival-corrected biomass was converted to percentiles for each ecotype
(0=lowest biomass, 100 = highest) and mean percentiles were plotted overall
(coloured polygons, n=447) for each ecotype (nypiana = 211, Ncoasea = 144,

Nyowiana = 92) and garden. The biomass percentiles (mean £ s.e.m.) for the 25% of
genotypes fromsites with the coldest extreme 30-year coldest minimum
temperature (blue lines and points) (ypiand = 52, Mcoasta = 35, Miowiana = 22) and the
mildest 25% (red lines and points) (1,p1ana = 53, Ncoastal = 36, Mioyiana = 23)
demonstrate that climate of origin affects biomass within ecotypesand across
gardens.d, Aheat map of the rank of climate similarity (xaxis) and imputed
biomass (y axis) demonstrates that the majority of 571 genotypes achieve their
highest biomass at common gardens that were climatically similar to their
source habitat.

Population genetic structure was discordant with variation in
morphological ecotype, which segregated strongly within genetic
subpopulations. Plants with upland ecotype traits were present in
both the Atlantic (37%) and Midwest (63%) gene pools. Similarly, 54%
and 46% of coastal ecotype accessions were assigned to Atlantic and
Gulf subpopulations, respectively (Fig. 3a). All plants with lowland
morphology were clustered within the Gulf subpopulation. However,
these Gulflowland plants had approximately equal proportions of
individuals that survived and perished during the northern winter
(Fig. 2c). Thus, important genetic diversity for breeding was present
within genetic subpopulations—a pattern that was validated through
realized genetic gains of biomass and winter survival within several
switchgrass breeding populations®?,

Despite ecotypic convergence among subpopulations, coales-
cent simulations dated the divergence of the subpopulations to the
mid-Pleistocene epoch (358,000 generations (0.7-1.4 Ma, assuming a
2-4year generationtime)) (Extended Data Fig.3). Thus, extant switch-
grass gene pools have been diverging for nearly half of the evolutionary
history of polyploid switchgrass. In contrast to the deep sequence diver-
gence among subpopulations, we observed very little molecular genetic
differentiation between upland and coastal ecotypes within the Atlantic
subpopulation (Fs; = 0.03), or between lowland and coastal ecotypes
within the Gulf subpopulation (Fs; = 0.03) (Extended Data Fig. 3).

Admixture appears to be common between the Gulf and Atlantic
subpopulations; comparisons of plants with coastal ecotype traits
from both of these subpopulations were molecularly more similar
(Fsy=0.19) than for noncoastal Gulf and Atlantic plants (Fs; = 0.24).
By contrast, the plants with upland morphologies in the Midwest and
Atlantic subpopulations were no more similar than other plants from
those subpopulations (F; for both=0.30). This convergence of upland
morphologies in two highly differentiated genetic subpopulations
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Fig.3|Population and quantitative genomics of climate-associated
adaptation. a, Admixture proportions among three gene pools (coloured by
subpopulation) and three ecotypes (labelled below), calculated using
eigenvector decomposition of the identity-by-descent matrix. The
corresponding geographical distribution of each ecotype is presented below
thebar plot (coloured by the ecotype distributions from Fig. 1a). Publicly
available culturaland physical GIS layers were accessed with the
rnaturalearthdataR package®. b, Post hoc tests of SNP-heritability (mean
h?+s.e.m.) attributable to polygenic background (below the black horizontal
lines) and significant multivariate adaptive shrinkage GWAS hits (above the
black horizontallines) are presented for the three main sites (biomass) and for

could be theresult ofindependent genetic origins of the upland ecotype
or rare but evolutionarily important® admixture events. We evaluate
these hypotheses below.

Genetic targets for yieldimprovement

To detect the genetic basis of climate adaptation and fitness withinthe
diversity panel, we conducted multivariate adaptive shrinkage®

genome-wide association mapping (GWAS) results within and across
genetic subpopulations. Multivariate adaptive shrinkage shares GWAS
peak effect size and direction between univariate tests toimprove power
to detect significant, shared results. Multivariate adaptive shrinkage
results were determined for both fitness GWAS (which mapped winter
survival and biomass in the three largest common gardens (MI, MO
and TX,)), and climate GWAS (which detected associations between
SNP variation and the climate of origin (seven representative climate
variables)). To make direct comparisons among subpopulations (which
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subpopulations (following a). Extended Data Fig. 2¢c provides descriptions of
the climate variables (ahm, bio2, bio4, bio5, biol6, biol7 and mat). Statistical
significance of higher heritability for GWAS hits relative to polygenic
inheritanceisindicated for two-sided Z-score Pvalues; **P<0.001, *P< 0.05.
¢, There arelarge and significant overlapsin climate-associated multivariate
adaptive shrinkage (mash) intervals between subpopulations, and smaller but
significant overlaps between fitness and climate hitsin the Atlanticand
Midwest subpopulations. Two-sided Fisher’s test Pvalue significance,
followingb.

have different segregating SNPs), we summarized the 12,239 significant
linkage-disequilibrium block ‘peaks’ of multivariate adaptive shrink-
age (log,o-transformed Bayes factor > 2)** into 10,090 20-kb regions
(20kbrepresentstheinflection point at which linkage disequilibrium
decay flattens) (Extended Data Fig. 3) for climate (7,egins = 9,856) and
fitness (M,egions = 332) GWAS (Supplementary Data 6). Aweighted list of
candidate genes—including putative SNP effects, the existence of pres-
ence-absence or structural variants, gene co-expression and physical
proximity to the GWAS peaks—can be foundin Supplementary Data 7.

GWAS peaks explained the majority of heritable phenotypic and
climatic variation (SNP-heritability) both across and withingene pools
(Fig. 3b). SNP-heritability of fitness (h’= 51.5 + 15.4% (mean + s.e.m.))
and climate-associated peaks (h*=70.5+14.0%) collectively explained
over threefold-more variation than the polygenic background
(fitness=19.5+9.1%, climate =18.2 £ 9.5%) (Extended Data Table 1). The
high heritability of these climate and biomass associations indicated
that relatedness at a small subset of all variants out-predicted overall
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relatedness and provides breeders with genetic diversity to target for
switchgrass improvement in local environments.

Loci that are associated with both fitness and climate of origin are
probably involved inlocal adaptation®*, and are strong targets for the
breeding of locally adapted cultivars. Overall, we observed nearly
2xmore overlap of20-kb regions associated with both climate and fit-
ness than expected by chance (Fisher’s test oddsratio=1.92, P<1x107°).
This overlap was especially strong within the two northern subpopula-
tions (Midwest, odds =11.5x and P<1x107"; Atlantic, odds =17.8x and
P<1x107") (Fig. 3c), where we expected to see the strongest effect of
selection onsurvival during cold winters.

Many regions of climate and fitness overlap were polymorphic only
within a single genetic subpopulation, which highlights several, pos-
siblyindependent, genetic paths to climate adaptationin switchgrass.
However, 9.5% (940) of the 20-kb climate intervals were polymorphic
in several genetic subpopulations. Given the substantial evidence of
admixture between the Gulfand Atlantic subpopulations (Fig. 3a), we
expected that contemporary gene flow would be the major contributor
to shared polymorphisms. Contrary to this hypothesis, the majority
(511 regions) of all multi-subpopulation GWAS intervals were shared
between the two most genetically distinct gene pools (Atlantic and
Midwest). Given the deep divergence time between these subpopula-
tions, rare or ancient gene flow* may have created these shared adap-
tive polymorphic regions.

Evolutionary convergence viaintrogression

Toexplicitly address how introgressions may have shaped the distribu-
tion of climate-SNP associations, we investigated physically contigu-
ous regions of admixture across the genome using a hidden Markov
model*. Introgressions between subpopulations represented 2.98%
of the content of our resequenced genomes (Fig. 4a), but were >1.5x
more likely to contain shared GWAS intervals across subpopulations
than expected by chance (Fisher’s test odds ratio =1.55, P<1x107%),
indicating that adaptive introgressions underlie at least a portion of
heritable variants shared among subpopulations.

Of particularinterest were a suite of introgressions from the Midwest
to the Atlantic subpopulation that dated to about 8,700 generations
before present (17-34 thousand years ago (ka)), which coincides witha
northernrange expansion after the Last Glacial Maximum (about 22 ka).
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proportionofintrogressed sequencein eachsignificance binfroma.c, The
introgression ranks fromb were converted to a purple-orange colour scale
(right of b) and georeferenced positions of collection sites for each library are
plotted for the northern Atlantic seaboard of the USA. Publicly available
culturaland physical GIS layers were accessed with the rnaturalearthdataR
package®.

Atlantic genotypes with higher levels of Midwest introgressions exhib-
ited a more-upland suite of traits (Fig. 4b) and were overrepresented
alongthe northern margin of the otherwise subtropical and temperate
range of the Atlantic subpopulation (Fig. 4c). Consistent with adaptive
roles for genomic introgressions in other systems®¥, these findings
suggest thatintrogression of putatively northern-adapted alleles from
the Midwest into the Atlantic subpopulation could have facilitated
the post-glacial colonization by switchgrass of colder habitats in the
northeastern coastal region of the USA. To test this hypothesis, we
conducted redundancy analyses to relate the presence of introgression
blocks with climatic, geographical and phenotypic factors. Overall,
Midwest introgressions in the Atlantic subpopulation were over four
times more strongly associated with climate (percentage of variance
explained = 46.5%) than geography (11.5%). Although 532 and 651
introgressions from the Midwest to the Atlantic subpopulation were
associated with climate of origin or biomass, respectively, 254 intro-
gressions were outliers for both analyses—representing a nearly 7-fold
enrichment over expectations of independence between each set (odds
ratio = 6.99, P<1x1075). These results reinforce the hypothesis that
Midwest introgressions have shaped the climatic niche and phenotypic
distribution of the northern Atlantic genotypes and supportagrowing
body of evidence that demonstrates that adaptive introgressions can
facilitate both range expansion and ecotype evolution®*,

Reduced heritability of dominant subgenomes

Polyploidy is common among lineages of flowering plants and can
increase the genetic diversity available to selection*®*, which canlead
toadaptive evolution or sorting that alters ecological niche character-
istics*2. This process may explain the generally greater prevalence of
polyploidsin poleward latitudes and higher elevations that were once
covered by ice sheets during glacial cycles®.

Genes duplicated during the formation of a polyploid can subfunc-
tionalize (divide ancestral gene functions among paralogous genes),
neofunctionalize (evolve new gene function for paralogues) or simply
be lost*. Following polyploid speciation, one subgenome commonly
retains more genes and exhibits, on average, higher expression lev-
els than the other subgenome, aphenomenon known as subgenome
dominance®. As with other polyploids** ™, subgenome dominance
and subfunctionalization were clear in switchgrass. Relative to the
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N subgenome, the K subgenome had higher gene density (77.4 versus
68.0 genes per Mb, binomial P<1x107), more upregulated genes (5,445
versus 4,477, binomial P<1x107%) and lower rates of mutation accumu-
lation (5,255 genes in the K subgenome with a synonymous mutation
rate (K;) greater thanthatinthe Nsubgenome, versus 6,751 genesin the
N subgenome with K, greater than that in the K subgenome, binomial
P<1x1075). Combined, all 11 of our subgenome statistics (Extended Data
Fig.4) pointto stronger evolutionary constraint of and bias towards the
K subgenome, which suggests that the potential for adaptive evolution
may be differentially partitioned between subgenomes.

Given the evolutionary biases towards retention of the K subgenome,
we expected to see stronger signals of climate adaptation**, biomass
and survival among SNPs on the K subgenome. Instead, 75.9% of bio-
mass SNP-heritability was attributable to the N subgenome, and only
24.1% to the K subgenome across the 10 common gardens (Extended
Data Fig. 4). Furthermore, 54.3% of Midwest introgressions into the
Atlantic subpopulation were found onthe N subgenome, asignificant
enrichment (binomial test P<1x107), even when correcting for the 7.5%
expansion of the N subgenome (binomial test P=0.0012). The abun-
dance of introgressions and heritable biomass variation attributable
to the N subgenome may appear to be at odds with subgenome evolu-
tionary biases towards the K subgenome. One potential explanation
for this counterintuitive finding is that relaxed evolutionary constraint
(reduced purifying selection) on the N subgenome may have allowed
for accumulation of adaptive genetic variation through directional
or diversifying selection. As such, the N subgenome has accumulated
heritable variation*’ that future breeding regimes can target to shape
natural switchgrass populations and improve biofuel yield.

Discussion

As the climate and the natural environment change, it is increasingly
critical to qualify expectations of genetic improvements in domesti-
cated species and the adaptive potential of wild populations®. Indeed,
plant genomes offer glimpses into the past and future of crop and wild
plant populations. Adaptation to glacial-interglacial cycles offers an
instructive analogue for current and future environmental change,
one that we explore here to investigate the past, present and future
genomic mechanisms of climate adaptation and yield improvement
inswitchgrass.

However, the complexity of plant genomes has also presented a
major barrier to the development of genetic resources that facilitate
fastand effective molecular breeding. Our methodology and successin
sequencing the complex genome of switchgrass will facilitate ecological
and agriculturalgenomicsinnearly any system. For example, our results
demonstrate that adaptation to northern climates hasbeen facilitated
byintrogressions between anciently diverged subpopulations, which
provides further support for the hypothesis that admixture between
divergent genomes can enhance adaptation to novel environments®.
Such adaptive introgressions and heritable subgenome-specific genetic
variation*” may provide the genetic paths of least resistance that permit
colonization of novel habitats during periods of environmental vari-
ability. Combined, obligate outcrossing and polyploidy—traits that are
often consciously avoided when selecting genomic study systems—are
the primary drivers of switchgrass adaptationin nature and the sources
of genetic variation available for selection to improve biofuel yield
through a changing future.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were completely randomized, and investigators were
not aware of genotype identifiers while conducting experiments or
sequencing.

Plant collections, propagation, cultivation and phenotyping

To form the diversity panel, seeds, rhizomes and clonal propagules
from natural and common garden sources were collected from 2010
to 2018. Plants grown from seed followed a standard growth proce-
dure’®. Inbrief,10-15 seeds were sown in 9-cm square pots containing
amixture of ProMix BX potting soil (Premier Tech Horticulture) and
Turface MVP calcined clay (Turface Athletics) and vernalized for 7 days
at4 °C. Pots were then placed in alit greenhouse with 14-h day length
and 30-°C/22-°C day/night temperature. Seedlings were thinned at the
3-leaf stage to1plant per pot and allowed to grow until the 5-tiller stage.
Rhizome propagules and 5-tiller seedlings were transferred to 5-gallon
pots containing finely ground pine bark mulch (Lone Star Mulch) and
time-release fertilizer (Osmocote 14-14-14, ScottsMiracleGro). All indi-
vidual plants were propagated in Austin by clonal division from 2016 to
2018, targeting >10 clones per unique accession. Cleary 3336F systemic
fungicide (Cleary Chemicals) was applied to the plants as necessary to
control fungal pathogens. Plants were placed in 1-gallon pots for the
final propagation.

Planting in the field sites occurred from 15 May to 10 July 2018 and
followed previously published methods'. In brief, plants were trans-
ported to each site by truck, where each field was covered with one
layer of DeWitt weed cloth. Plants were placed in holes that were cut
into the weed cloth into a honeycomb design in which each plant had
four nearest neighbours, all located 1.56 m from one another. To pre-
vent edge effects, the lowland Blackwell cultivar was planted at every
edge position. Plants were hand-watered following transplantation.
Aboveground portions of all plants were left to stand over the winter
0f2018-2019 and removed in the spring of 2019 before spring tiller
emergence. At the end of the 2019 season, plants were tied upright as
abunch and harvested with sickle bar mowers.

We generated two measures of fitness for the 2019 growing season:
log-transformed biomass (kg) and proportion of winter survival (Sup-
plementary Data 8). Biomass data were obtained from all living indi-
viduals during harvest in October and November 2019. Plants with an
estimated mass <750 g were placed in paper bags and dried whole at
60 °Cuntil no additional moisture loss occurred, then weighed for total
drybiomass. Plants with an estimated mass >750 g were weighed in the
field for wet biomass on ahanging scale with a+5-g resolution. To deter-
mine biomass of these plants, approximately 500 g of whole tillers were
subsampled from each plant, weighed, dried asabove and reweighed.
The wet biomass of the whole-plant sample was then multiplied by the
per cent moisture in the subsample to approximate total dry biomass.
Plants were considered to have experienced winter mortality during
the 2018-2019 winter season when no new growth was seen from plant
crowns by 1June 2019. The dead plant crowns were excised from the
experiment and replaced with plants of the Blackwell cultivar in July
or September 2019.

Genome assembly and polishing

We sequenced the Alamo switchgrass genotype AP13 using a whole
genome shotgun sequencing strategy and standard sequencing proto-
cols atthe Department of EnergyJoint Genome Institute and the Hud-
sonAlphalnstitute for Biotechnology. The genome was assembled and
polished from 4,520,785 PacBio reads (121.66x raw sequence coverage
fromatotal of 59 P6C4 2.0 and 2.1 chemistry cells with10-h movie times
andap-readyield of 91.76 Gb) (Extended Data Fig.1) using the MECAT
assembler®?and ARROW polisher®, Final genome polishing and error
correction was conducted with one 400 bp insert 2 x 150 bp lllumina

HiSeq fragment library (177.1x). Reads with >95% simple sequence
repeats and reads <50 bp after trimming for adaptor and quality (g <20,
5-bp window average) were removed. The final read set consisted of
1,259,053,614 reads for a total of 168x coverage of high-quality Illumina
bases. This produced aninitial diploid assembly of 6,600 scaffolds
(6,600 contigs), witha contig N5, 0of 1.1Mb, 3,489 scaffolds larger than
100 kb and a total 2C (diploid) genome size 0f 2,013.4 Mb.

Assembling a haploid genome in an outbred individual, such as
AP13, willgenerally yield both haploid copiesin heterozygous regions,
necessitating computational steps to represent each chromosome as
asingle-copy haplotype without duplicate copies being unnecessarily
repeated. Our initial assembly was approximately double the expected
haploid (1C) genome size of 1.2 Gb. Therefore, to detect putative mei-
otically homologous haplotypes, we identified and counted shared
24-mersthat occurred exactly twice in the assembly and binned contigs
accordingly. A total of 3,152 shorter and redundant alternative haplo-
typesand 2,387 overlapping contig ends were identified, comprising a
total sequence of 871.2 Mb. The remaining 1,142.2 Mb of sequence was
ordered and oriented into 18 chromosomes by aligning genetic markers
from2available maps (Supplementary Data1) to the MECAT assembly;
563 joins and 57 breaks were made, with 10,000 Ns representing the
unsized gap sequence. Overall, 97.2% of the assembled sequence was
contained in the chromosomes. Telomeric sequence was identified
using the (TTTAGGG), repeat and properly oriented. The remaining
scaffolds were screened against GenBank bacterial proteins and orga-
nelle sequences and removed if found to match these sequences. To
resolve minor overlapping regions on contig ends, adjacent contig
ends were aligned to one another using BLAT**; a total of 47 adjacent
duplicate contig pairs were collapsed.

We conducted two rounds of error correction. First, we corrected
homozygous SNPs and insertions and/or deletions (indels) by align-
ing thelllumina2 x150 bp library to the release consensus sequence
using bwa mem?® and identifying homozygous SNPs and indels with
the UnifiedGenotyper tool of GATK®. A total of 690 homozygous SNPs
and 80,199 homozygousindels were corrected in the release. Second,
we computationally finished 11,343 assembled contigs sequenced
from BAC clones with acombination of ABI3730XL capillary sequenc-
ers* and single index Illumina clone pools and aligned this set of
switchgrass clones to the SNP-fixed genome to find heterozygous
SNPs that were out of phase with their neighbours. To resolve these
phase-switched alleles, the full set of the raw PacBio reads was aligned
to the assembly. For each read, the phase of each heterozygous site
was determined and 62,732 out-of-phase heterozygous sites were
corrected.

To distinguish the N and K subgenomes, we used a de novo
repeat-clustering method and validated this with phylogenetic dis-
tances to a related species. We searched for ‘diagnostic’ 15-mers via
Jellyfish®® in LTR regions of Gypsy, Copia and Pao insertions (identi-
fied by RepeatMasker® and LTRHarvest®°) that distinguished each
set of homologous chromosomes (<1 hit in one homologue and
>100 in the other). The LTR sequences that shared common 15-mers
were grouped as superfamilies and were aligned within each super-
family by BLAST. Superfamily members with significant BLAST hits
(e<0.01, 290% length) were assigned into families and aligned by
Mafft®. Jukes-Cantor distances between LTR families were com-
puted by the R ape package®?, and clustered into two distinct sets of
subgenomes. Clustering was identical between LTRs and alignments to
P.rudgei (K.M.D. and E. Kellogg, unpublished data), whichis an ancient
relative of the K subgenome”, giving high confidence that we have effec-
tively assigned all chromosomes to the correct subgenomes. Finally,
we assigned chromosome identifiers and oriented each chromosome
pseudomolecule via synteny with Setaria italica®. The final haploid
version 5.0 release contained 1,125.2 Mb of sequence, consisting of 626
contigs with a contig N50 of 5.5 Mb and a total of 97.2% of assembled
bases in chromosomes.



Gene annotation

Transcript assemblies were made fromabout 2 billion pairs of 2 x150-bp
stranded paired-end Illumina RNA-seq reads, about 1 billion pairs of
2 x100-bp paired-end Illumina RNA-seq reads and 454 reads (Sup-
plementary Data 3) using PERTRAN (details of which have previously
been published®). In brief, PERTRAN conducts genome-guided tran-
scriptome short-read assembly via GSNAP® and builds splice align-
ment graphs after alignment validation, realignment and correction. In
total, around 4.5 million PacBio Iso-Seq circular consensus sequences®
were corrected and collapsed, resulting in approximately 677,000
putative full-length transcript assemblies. Subsequently, 668,176 tran-
scriptassemblies were constructed using PASA®” from RNA-seq reads,
full-length cDNA, Sanger expressed sequence tags, and corrected and
collapsed PacBio circular consensus sequence reads. Loci were deter-
mined by EXONERATE® alignments of switchgrass transcript assem-
blies and proteins from Arabidopsis thaliana®, soybean’, Kitaake rice”,
Setariaviridis’, P. hallii var. hallii®*, Sorghum bicolor™, Brachypodium
distachyon™, grape and Swiss-Prot” proteomes. These alignments were
accomplished against arepeat-soft-masked switchgrass genome using
RepeatMasker® (repeatlibrary from RepeatModeler” and RepBase”’)
with up to 2,000-bp extension on both ends unless extending into
anotherlocusonthesamestrand. Incomplete gene models, which had
low homology support without full transcriptome support, or short
single exon genes (<300-bp coding DNA sequences (CDS)) without
protein domain or good expression were removed.

Comparative genomics

Syntenic orthologues and paralogues were inferred for the two
switchgrass subgenomes via the GENESPACE pipeline®*, using default
parameters and two outgroups: P. hallii var. hallii®* and S. bicolor™.
In brief, GENESPACE parses protein similarity scores into syntenic
blocks and runs orthofinder’ on synteny-constrained blast results.
Theresulting block coordinates and syntenic orthology networks give
high-confidence anchors for evolutionary inference.

To calculate the ancestral states of CDS regions, we first determined
sequences that share common ancestry using genomes from Phyto-
zome”. The final number of hits to the switchgrass genome were 38,960
and 33,772 for P. hallii,and S. bicolor, respectively. For any given orthol-
ogy network, we built two multiple sequence alignments in mafft®,
one excluding the focal switchgrass sequence (msa,) and one forcing
msa, to align to the coordinate system of the focal sequence via the
--keeplength parameter. We then extracted marginal character states
with the maximum likelihood algorithm in Phangorn®. For each recon-
struction, only the internal node closest to the switchgrass branch was
used as the ancestral state. Overall, we analysed 40,943 switchgrass
genemodels (216,157 exons) covering 54.95Mb (Supplementary Data9).

Subgenome evolution and dating

Toinfer the ages of the subgenomes and tetraploid switchgrass, we took
aconservative set of orthologues with simple 2:1:1 networks between
P.virgatum, P. halliiand . italica. This yielded 45,045 switchgrass proteins
aligning to 24,549 P. hallii proteins, resulting in 20,496 homologue pairs
and 4,053 singletons (2,396 for K subgenome and 1,660 for N subgenome)
fromthe cross-species analysis. We aligned the translated CDS of these
sequences using Dialign-TX®., The aligned CDS sequences were concat-
enated and fed to Gblocks® using default parameters. Gblocks filtered
thealignment of 18,044,244 CDS nucleotides t0 16,321,302 positions, in
50,334 blocks. The resulting alignment was then used in PhyML® to build
amaximum-likelihood tree using the general-time reversible model. This
tree was used as an input to r8s®, to compute a time tree and calibrate
the Panicum-Setaria node of the tree to 13.1 Ma®. To date subgenome
divergence and therefore the timing of polyploid switchgrass speciation,
we leveraged burst distances, which refer to all distances withinan LTR
family (whereas pairwise distances refer to the distance between the

5’and 3’ LTRs of the same insertion). The 5’ versus 3’ distances of the
N- or K-subgenome-specific retrotransposons were used to date the
insertion times of those elements. This method cannot be used for the
P.virgatum-specific or Panicum-specific families because the more recent
expansions of those elements dominate the distributions. Instead, we
relied on comparing the best cross-species alignments to estimate the
LTR distances of the P. virgatum-P. hallii and Panicum-Setaria nodes.
This way, we have calibration points to compare the LTR distances to
the more confident protein-coding gene divergences between species.

Subfunctionalization and gene expression analyses

To assess whether the subgenome evolution biases observed at the
protein-coding sequence scale were manifest in phenotypes, we
explored gene expression biases between homologues from biologi-
cally replicated AP13 leaf tissue (n = 5) collected at two sites (TX, and
MI). lllumina paired-end RNA-seq 150-bp reads were quality trimmed
(Q=25) and reads shorter than 50 bp after trimming were discarded.
High-quality sequences were aligned to P. virgatum v5.1 reference
genome using GSNAP® and counts of reads uniquely mapping to
annotated genes were obtained using HTSeq v.0.11.2%. The test for
differential expression was conducted through a likelihood ratio test
in DESeq2%. Library sizes were calculated before splitting the reads by
subgenome; these sizes were used as the size factors in the analysis of
differential expression. Subfunctionalization was defined as a signifi-
cant subgenome-by-environmentinteraction fromthelikelihood ratio
test. Subgenome expression bias was tested for both the field gardens
and annotation libraries using post hoc Wald-test contrasts between
subgenomes within conditions. Significant bias was defined as differ-
ential expression false-discovery-rate-adjusted P< 0.05. Weighted gene
coexpression clustering of AP13 gene annotation RNA-seq libraries was
conducted with WGCNA® with a power of 6. Raw counts can be found
inSupplementary Data10.

Ploidy assessment

We used a LSRFortessa SORP Flow Cytometer (BD Biosciences) to
determine ploidy levels of the resequenced accessions. For each
plant,200-300 mg of young leaf tissue was macerated in a Petri dish
with arazor blade and treated for 15 min with 1 ml Cystain Pl Absolute
P nuclei extraction buffer (Sysmex Flow Cytometry) mixed with 1 pl
2-mercaptoethanol. Samples were filtered to isolate free nuclei with
a CellTrics 30-um filter (Sysmex) and treated for 20 min on wet ice
with 2 ml of Cystain Pl Absolute P staining buffer (Sysmex), 12 pl of
propidium iodide and 6 pl of RNase A. Samples were run on the flow
cytometer to determine nuclei size with a minimum of 10,000 nuclei
analysed per sample. Output from the flow cytometer was analysed
with FlowJo software (BD Biosciences) and samples were binned into
three categories on the basis of the average units of fluorescence per
nuclei (SupplementaryFig.1). Ploidy level of the sample was considered
4xif the cell population had 40,000-80,000 units of fluorescence,
6% for 80,000-100,000 units and 8x for100,000-140,000 units. The
binning parameters were established with flow cytometry data from
several P.virgatum accessions of known ploidy.

Wealso assessed ploidy of the samples viathe distribution of variant
allele frequency at biallelic SNPs (as described in “Variant calling’). This
method assumes that tetraploids and octoploids follow different allele
frequency distribution patterns, with tetraploids having 0.5/0.5 (refer-
ence and variant depths) and octoploids having a mixture of 0.75/0.25
and 0.5/0.5. If the proportion of hits with 0.48 <x < 0.52 was <0.035,
the library was considered octoploid and if it was >0.035, tetraploid;
837 out of 870 samples (96.2%) that had flow cytometry data matched
with these results.

Variantcalling
Atotal of 789 tetraploid diversity samples were resequenced at amedian
depth of 59x (range 20x-140x). Of these, 732 were used for further
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analysis after filtering for missing data, outlier elevated heterozygosity
and collection site discrepancies. The samples were sequenced using
lllumina HiSeq X10 and Illumina NovaSeq 6000 paired-end sequenc-
ing (2 x 150 bp) at HudsonAlpha Institute for Biotechnology and the
Joint Genome Institute. To account for different library sizes, reads
were pruned to <50x coverage, then mapped to the v5 assembly using
bwa-mem®.

SNPs were called by aligning Illumina reads to the AP13 reference
with BWA-mem. Theresulting .bam file was filtered for duplicates using
Picard (http://broadinstitute.github.io/picard) and realigned around
indels using GATK 3.0°¢. Multi-sample SNP calling was done using SAM-
tools mpileup®® and Varscan V2.4.0% with aminimum coverage of eight
and a minimum alternate allele count of four. Genotypes were called
viaabinomial test. SNPs within 25bp of a24-mer repeat were removed
from further analyses. Only SNPs with <20% missing data and minor
allele frequencies >0.005 were retained, resulting in 33,905,042 SNPs
across 75% of the genome at a coverage depth between 8x and 500x.
Phasing was performed using SHAPEIT3®. F; calculations were accom-
plished viavcftools™. We tested for subgenome read-mapping bias by
generating mean coverage per Mb for each of the 732 libraries and 18
chromosomes. We then fit a mixed effects linear model to these datain
Ime4”?in which the chromosome number (1-9) was arandom effect, to
test the main effect of subgenome. Models with and without the main
effect term were compared via a likelihood ratio test.

Individual de novo assemblies for the 732 short read libraries were
constructed using HipMer?® with a k-mer size of 101 to maximize hap-
lotype splitting among contigs. As the assemblies varied in quality and
contiguity, the sample set considered for gene presence-absence and
structural variant detection was narrowed to 251 samples (pan-genome
set) based on total assembly size, contig N5, length and total gene align-
ments per library.

To assess presence-absence variation of genes across the
pan-genome, we aligned all AP13 proteins and a unique set of 6,161
proteins from Oropetium thomaeum (N, qeins = 1,476)%, S. italica
(n=1,085)%, Setaria viridis (n=891)", P. hallii var. filipes (n=1,048)%,
S. bicolor (n=878)% and P. hallii var. hallii (n = 772)%. These unique
genes were extracted fromsingle-copy orthology networksinferred via
orthofinder”®and selection owing to alack of orthology to switchgrass.
Allproteins (2100 amino acids) were aligned to all de novo assemblies
using BLAT**. Gene alignments from AP13 proteins were considered
present if they aligned with greater than or equal to 80% identity and
75% coverage, whereas other grass proteins were considered present
with alignments greater than 70% identity and 75% coverage (to allow
greater divergence among species). Variable (pan-genome shell) genes
(considered present across 40-60% of the population; n=>5,432) were
extracted from the presence-absence variation matrix and used to
visualize differences among non-admixed individuals fromthe Atlantic,
Gulfand Midwest subpopulations. Testing genes that were significantly
over-orunder-represented within each subpopulation was conducted
with a x* test with a Benjamini-Hochberg multiple testing correction
(P<0.05).

Todetect structural variants across the pan-genome, contigs (=2 kb)
from each library were aligned to the AP13 reference genome using
ngmlr® with default settings for PacBio reads. The resulting .bam file
was sorted using samtools®® and used for calling structural variants
with sniffles®. Individual structural variant calls were merged across
samples using SURVIVOR?, with a maximum allowed distance of 1kb.
The resulting .vcf file was filtered using beftools® using a minimum
minor allele frequency of 0.1, and considering only insertions and dele-
tions between100 and 1,500 bp inlength.

Population genomics

Toassess the genetic population structure of the 732 tetraploid librar-
ies (Supplementary Data 4), we extracted all fourfold degenerate
sites (putatively neutral) with ancestral state calls (Supplementary

Data 9) from the ancestral state alignments. This list of sites,
which represents our highest confidence neutral loci, was then
linkage-disequilibrium-pruned using athreshold of |r| < 0.6, resulting
in 59,789 sites for downstream analyses in the R package SNPRelate®.

The extent of linkage disequilibrium for the population was deter-
mined from SNPs*® in PLINK'®. Linkage disequilibrium (r?) was calcu-
lated using plink (--Id-window 500--Id-window-kb 2000). The  value
was averaged every 500 bp. A nonlinear model was fit for this datain
Rusingthenls function, and the extent was determined as to when the
linkage disequilibrium (%) nonlinear curve stabilized.

Population genetic structure was assessed hierarchically. Given the
presence of highly divergent ecotypes across the study range, we first
analysed the broadest genetic population structure using discriminant
analysis of principal components (DAPC)'” inadegenetv.2.0.1'°%. This
method does not rely on common assumptions (for example, Hardy-
Weinbergequilibrium and linkage disequilibrium) that underlie many
population clustering approaches and therefore provides a valuable
tooltolook at broad structural divisions. DAPC demonstrated astrong
set of gene pools and separated Midwest genotypes from all others.
We then evaluated the genetic population structure and potential
admixture of the remaining non-Midwest individuals using a Bayes-
ian clustering algorithm implemented in STRUCTURE v.2.3.4'® via
the admixture model with correlated allele frequencies. The analysis
consisted 0f 20,000 burn-insteps and 30,000 replicates of 1-6 geno-
typic groups, each of which was run 10 times. Ancestry coefficients
across all subpopulations were assigned post hoc through eigenvector
decomposition in SNPRelate.

We inferred the demographic history of the switchgrass samples
using Multiple Sequentially Markovian Coalescent (MSMCv.2.0'**),
whichis a population genetic method used to infer demographic his-
tory and population structure through time from sequence data. This
method models an approximate version of the coalescent under recom-
bination, and produces tests of both population size and divergence
time. MSMC was run using four haplotypes for each subpopulation,
skipping ambiguoussites, an estimated rhoOverMu of 0.25and atime
segment pattern of 10 x2+20 x 5+10 x 2. We estimated rhoOverMu as
0.25 as the mean value from 100 iterations without the fixed recom-
bination parameter for 5 sets of 4 haplotypes in each subpopulation
and averaged them. To estimate scaled divergence time in generations,
we assumed a mutation rate of 6.5 x 1078, To make estimates of initial
divergence time, we compared adjacent relative cross-coalescence
rate (RCCR) values (past to present) (Supplementary Data11). If there
wasadecline, either at asingle time segment or within contiguous seg-
ments or within two interleaved time segments (>0.01; observed range
0.01-0.28), and the following neighbours were nearly zero (<0.009;
observed range: -0.1-0.009), we considered that to be a starting point
for populationseparation. However, if there was another decline within
five time segments, we considered the latter as the start of population
separation. We replicated the analyses with 16 sets of different individu-
als for each subpopulation contrast.

Population structure was visualized across SNPs, structural variants
and presence-absence variants via eigenvector decomposition of adis-
tance matrix. First, a Euclidean distance matrix was calculated among
0/1/2 (reference homozygote, heterozygous, alternative homozygote)
library x marker matrices for each of the three variant call types. The
Euclidean matrix was then scaled and centred to remove among-library
coverage variance via Gower’s centred similarity matrix, implemented
in the R package MDMR'®,

Ecotype classification

Mature switchgrass accessions at or near anthesis were surveyed for 16
planttraits (leaf:length, width, length/width ratio, area, lamina thick-
ness and lamina/midrib thickness ratio; whole plant: number of tillers,
tiller height, product of tiller height x number, tiller height/countratio,
panicle height, panicle height/count ratio, leaf canopy height and tiller/
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leaf height ratio; phenology: date of green-up and date of panicle emer-
gence) to determine ecotype identity during the summer of 2019 at the
University of Texas].]. Pickle Research Campus (PKLE; or TX, (Austin,
Texas, USA) and Michigan State University Kellogg Biological Station
(KBSM; or Ml (Hickory Corners, Michigan, USA)) common gardens (see
Supplementary Data 5 for detailed descriptions of these variables). The
phenology measurements, including green-up (when the first green
vegetative structures emerge from the rhizome crown) and panicle
emergence (When the first reproductive structures emerge from the
tiller), were assayed daily. Detailed leaf morphology was assessed on
arepresentative leaf of each plant by measuring length and width (in
mm), midrib and laminathickness (in pm) (Mitutoyo 547-500S caliper)
and leafarea (inmm?) (Licor 3100C leaf areameter). In addition to these
quantitative traits, we also generated a qualitative upland-lowland
index for both the leaf and whole-plant appearance, collected at the
end of the summer 2019 in Austin (TX, site). Each plant characteristic
was assessed on al-5scale from most lowland-like to most upland-like.
The established cultivars Alamo and Dacotah were used for baseline
measurements of lowland and upland characters, respectively. Plant
charactersassessedincluded:tiller appearance, from thickest and most
lowland-like to thinnest and most upland-like; leaf appearance, from
widest, longest and most lowland-like to shortest, thinnest and most
upland-like; canopy colour from bluest and most typically lowland to
darkest green and most typically upland. This visual approach is akin
to basic selection criteria often used by switchgrass breeders.

Toassess phenotypicstructurein these data, we used a DAPC'., Prior
groups were determined by first transforming the phenotypic data
using principal component analysis (PCA), then the first 10 principal
components were used in a k-means algorithm to classify individuals
into 3 possible groupings aiming to maximize the variation between
groups. Next, DAPC was implemented on the 10 retained principal
componentsto provide an efficient description of the ecotypic clusters
using two synthetic variables, which are linear combinations of the
original phenotypic variables that have the largest between-group
variance and the smallest within-group variance (that is, the discri-
minant functions).

We classified each of the 651 tetraploid genotypes surveyed for the 16
traits at the Mland TX, gardens (34 total features, 32 quantitative and 2
qualitative ordinal traits) to 1of the 3 ecotypes through alow-capacity
neural network with1hidden layer and Sunits (Supplementary Data5).
The neural network was implemented in caret'®® and was trained on
seven cultivars with known ecotypes (lowland: Kanlow and Alamo;
coastal: High Tide and Stuart; upland: Summer, Dacotah and Sunburst)
and 78 additional genotypes that were in the same SNP-based genetic
cluster (Extended DataFig. 3), collected in the same states and clustered
most closely in phenotypic PCA space with the exemplar cultivars.
These high-affinity exemplar genotypes are printed in Supplementary
Data 5. Ecotypes for the remaining 582 genotypes that were phenotyped
for the ecotype classification traits were predicted with caret'®. By
using traits collected at gardens representing both the northern and
southern switchgrass range, we hoped to avoid local climate bias on
plant phenotype and subsequent ecotype classification. Furthermore,
the neural network classification approach offers one notable advan-
tage over both DAPC and expert’s qualification: because the neural net-
workis anchored to known and published genotypes, experimentation
that includes these common cultivars will be able to more effectively
recapitulate our assignments.

Admixture and introgression block calculation and dating

We built adatabase of admixture-informative SNPs through a two-step
pipeline. First, ancestry coefficients were calculated as in ‘Popula-
tion Genomics’ from fourfold degenerate sites that had associated
ancestral-state calls. The 30 samples with the least missing data and
proportion of genome-wide admixture < 0.001 for each subpopulation
were used to define subpopulation-specific allele frequencies. These

libraries were used to find SNPs with at least one pairwise F¢; value
>0.4, as calculated with the ‘W&C84’ method in the snpRelate function
snpGdsFst.Second, these global ancestry-informative sites were parsed
within each subpopulationto those with minor allele frequencies > 0.05
and missingness < 0.05. These sites were further pruned within sub-
populations first to sites with |r| < 0.9 (10 SNPs or 1,000-bp windows),
thento |r| <0.95 (1,000 SNPs or 10,000-bp windows) in snpRelate.
This process resulted in the following SNP and library counts for each
subpopulation: Atlantic, 579,468 SNPs and 284 libraries; GULF, 641,975
SNPs and 215 libraries; and Midwest, 481,563 SNPs and 196 libraries.

Totest for the physical locations of admixture blocks between each
pair of subpopulations, we used Ancestry HMM?**'%’, This approach
leverages allele frequenciesin putative parental populations to deter-
mine regions of likely introgressions in a test population. For each of
the three subpopulations, we sought to determine the timing, extent
and current positions of admixture block introgressions. In each case,
we permitted two pulses from each of the other two subpopulations.
Ancestry_HMM can optimize the number of generations before present
when an ancestry pulse occurred and the proportion of individuals
involved in the admixture pulse. However, 8-parameter optimization
with>480,000ssites and >150 libraries was not computationally feasi-
ble. Therefore, we optimized parameters using 40 randomly sampled
libraries with admixture coefficients within the 0.2-0.8 quantiles of the
admixture proportion distribution and SNPs only on chromosome 4
of the N subgenome. We chose this chromosome as representative of
othersbecause of alack of obvious large high-frequency introgressions.
Theresulting ancestry pulse parameter optimizations were founded on
aninitially unadmixed population 10,000 generations before present,
and two subsequent admixture pulses for each of the other two sub-
populations; the optimized pulses are as follows (source-reference):
Midwest-Atlantic (Mgenerations = 8,658 and Pygpmiea = 0.001%; 67 and 0.7%),
Gulf-Atlantic (85and1.1%;17 and 0.25%), Atlantic-Gulf (79 and 1.9%; 11
and 0.38%), Midwest-Gulf (79 and 0.86%; 11 and 0.14%), Atlantic-Mid-
west (66 and 0.27%; 14 and 0.036%), and Gulf-Midwest (71and 0.15%;
14 and 0.033%). These pulses were supplied to the full model with all
individuals and chromosomes, along with an error probability of 0.001,
maximum number of generations before present 0f10,000 and effec-
tive populationsize 0f100,000. Posterior ancestry probabilities were
decoded into haplotype blocks and blocks were binned into clusters
of similarly positioned blocks.

Landscape genomics

Geographical maps were made with publicly available layers down-
loaded from Natural Earth (https://www.naturalearthdata.com/).
Various plotting routines rely on the sf'®® and raster'®® packages in the
R environment for statistical computing'®. Climate data were down-
loaded from WorldClim? (19 bioclimatic variables, 0.5-arcmin resolu-
tion1960-2000) and ClimateNA®. The distribution of climate variables
across collections sites was explored viadynamic clustering™ followed
by partitioning around medoids clustering"?with k=7. The most rep-
resentative climate variables were defined as those most correlated
with the first eigenvector of variation within each cluster. Six of the
seven clusters included WorldClim variables.

Weather datawere downloaded from the NOAA portal for the most
proximate weather station to each garden site that had complete
daily temperature (minimum-maximum), and precipitation data
from 1September 2018 to 31 October 2019. The NOAA weather sta-
tionidentifiers used for each gardenare as follows: IL (USC00110338),
MI (USW00014815), MO (USW00003945), NE (USC00255362), OK
(USW00053926), SD (USC00391076), TX; (USC00414810), TX,
(USC00410433), TX;(USC00418862) and TX, (USW00003901).

Climate-phenotype associations across gardens were conducted
on both raw data and imputed data. Latitude-survival associations
(Fig. 2b) were accomplished on raw data with logistic regressions via
glmwith abinomial family in R. Imputations, which were accomplished
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in base R using nearest neighbours across all available phenotypes
(k=5), were used exclusively for tests of the rank order of gardens
(Fig. 2¢c, d). Climate similarity-biomass associations were accom-
plished in mixed linear models via Imer®?, comparing the full model
(fixed = climate distance + intercept, random = genotype identifier)
to areduced model without the climate distance fixed effect using a
likelihood ratio test.

Species distribution modelling (SDM) was used to simulate
modern-day potential ranges for all ecotypes (upland, lowland and
coastal) of P. virgatum. The final datasets used to build the SDMs
comprised 277 (upland), 199 (coastal) and 121 (lowland) occurrence
records. Six environmental predictors were used in our final SDM
modelling (BIO1 = annual mean temperature, BIO2 = mean diurnal
range, BI04 = temperature seasonality, BIO5 = maximum tempera-
ture of warmest month, BIO16 = precipitation of wettest quarter and
BIO17 =precipitation of driest quarter). SDMs were then generated with
BIOMOD2v.3.3" with seven modelling algorithms: generalized linear
models, boosted regression trees, artificial neural networks, flexible
discriminant analysis, random forest, classification tree analysis and
multivariate adaptive regression splines. For each model, the occur-
rence data were coupled with 500 pseudo-absence data generated
randomly within the modelled study area with equal weighting for
presences and pseudo-absences™. Models were trained with 80% of
the coupled occurrences and pseudo-absence dataand tested with the
remaining 20%. Each modelling algorithm was run 100 times for a total
of 700 models, which were evaluated via true skill statistics (TSS)™.
TSS values ranging from 0.2 to 0.5 were considered poor, from 0.6 to
0.8 useful, and >0.8 good to excellent™®, Unique ensemble SDMs were
computed from approximately the 50 best SDMs out of 700 models
for the three ecotypes on the basis of TSS threshold values (upland
TSS threshold = 0.96, lowland TSS threshold = 0.93 and coastal TSS
threshold =0.965). The final ensemble SDMs were projected onto pre-
sent climate layers to visualize modern-day potential ranges (Sup-
plementary Data12).

We examined how the presence of Midwest introgressions in the
Atlantic subpopulation were associated with the independent and
jointinfluences of climate, geography and kinship, by implementing
redundancy analysis in vegan'’?°, To partition explainable variance
inintrogression presence attributable to climate, kinship and geogra-
phy, we ran four models: one full model with introgression presence
(potential introgression blocks were coded as O for Atlantic inherit-
ance or 1for Midwest introgression) explained by climate (that is, the
sevenrepresentative climate variables), kinship (the first two principal
components calculated from the set of putatively neutral markers)
and geography (latitude and longitude), and three models for each
of these three factors conditioned on the other two. The inertia (that
is, variance) values from the constrained matrix of each model were
compared to determine the relative importance of climate, kinship,
geography and their joint effect. Furthermore, to find introgression
regions strongly linked to climate and survival-corrected biomass,
we extracted the loadings for the redundancy analysis axes from two
additional models: (1) one predicted by only climate and (2) one pre-
dicted only by survival-corrected biomass. Both models were signifi-
cantaccording to permutation tests (n=999; P< 0.001for both), and
allaxes were approximately normally distributed. SNPs loading at the
tails of each axis were more likely to indicate selection related to the
predictors (thatis, climate or survival-corrected biomass), so we identi-
fied allmarkers thatwere atleast 2.5s.d. (two-tailed P=0.012) from the
centre as introgressions putatively under selection.

GWAS

Owing to the large sizes of our common garden datasets, we
developed a pipeline—the switchgrassGWAS R package (https://
github.com/Alice-MacQueen/switchgrassGWAS)—to allow fast,
less-memory-intensive GWAS on the diversity panel, and to analyse

the extent to which SNP effects were similar or different for pheno-
types measured at different sites. This package leverages bigsnpr'?
to perform fast (>300x faster than TASSEL) statistical analysis of mas-
sive SNParrays encoded as matrices. Italsoincorporates current gold
standards in the human genetics literature for SNP quality control,
pruning and imputation, as well as population structure correctionin
GWAS. To test the significance of many effects in many conditions (for
example, multiple sites, climate variables and so on), we used mashr?,
aflexible, data-driven method that shares information on patterns of
effect size and sign in any dataset for which effects can be estimated
on a condition-by-condition basis for many conditions and SNPs. We
determined which SNPs had evidence of significant phenotypic effects
usinglocal false sign rates, which are analogous to false discovery rates
but more conservative (in that they also reflect the uncertainty in the
estimation of the sign of the effect)??. We used these values to find
SNPs with log;,-transformed Bayes factors > 2. Here, the Bayes factor
was the ratio of the likelihood of one or more significant phenotypic
effects at a SNP to the likelihood that the SNP had only null effects.
Following previous work®, a Bayes factor of >10? is considered deci-
sive evidence in favour of the hypothesis that a SNP has one or more
significant phenotypic effects.

To calculate regional heritability for climate- and fitness-associated
SNPs we followed a previously described two-step method'?. Variance
component analysis was accomplished with ASReml (VSN Interna-
tional), using genomic relationship matrices calculated using the van
Radenmethod®*. Genomic relationship matrices were calculated within
each subpopulation and for the full diversity panel. A kinship matrix
based onall SNPs used in the univariate GWAS was calculated (G), as well
asakinship matrix based on SNPs significantly associated with climate
inthat subpopulation (log;,-transformed Bayes factor >2; Qjimae) and a
kinship matrix based on SNPs significantly associated with biomass or
winter survivalin that subpopulation (log,,-transformed Bayes factor
>2, or >1.385 for Gulf subpopulation; Qgness)- These kinship matrices
were used for regional heritability mapping'? as in a previous publica-
tion'®, using mixed models of the form:

y=1+Zu+Zv+e
Var(u) = Go?
Var(v) = Qo2
Var(e) = /0?2

in which the vector y represents the biomass values, Zis the design
matrix for random effects, u is the whole genomic additive genetic
effect, vis the regional genomic additive genetic effect and eis the
residual. Matrix G is the whole genomic relationship matrix using all
SNPs for the whole genome additive effect. Matrix Q is the regional
genomicrelationship obtained as above: one of Q_jimate OF Qfitness- /1S the
rank-y identity matrix, in which y is equal to the number of biomass
values. Whole genomic, regional genomic and residual variances are
0,0, and o, respectively. Phenotypic variance (03) is 9, + 0, + 07.
Whole genomic heritability, regional heritability and total heritability
areh,=(02/02), h; = (0%/0?) and hi.,,= (02 +62/0?), respectively.

These models were runfor the three locations where subpopulation
GWAS were conducted: Columbia, Missouri; Hickory Corners, Michi-
gan; and Austin, Texas. This resulted in 80 models: 4 sets of populations
(the full diversity panel and 3 subpopulations), 2 model types (one
model with G only and a G+ Q model), for 10 phenotypes (biomass at
3sitesand 7 environmental variables).

Variance component analyses were also used to partition variance
between the K-and N-subgenomes. Only SNPs with ancestral state calls
(Supplementary Data 9) were used in this analysis, resulting in 460,429
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SNPs used for each population subset. Kinship matrices based on all
SNPs on a particular chromosome were calculated (Qcnroix tO Qchrooxs
and Qcnrom tO Qcnroon), resulting in 18 kinship matrices. These kinship
matrices were used for regional heritability mapping, using mixed
models of the form:

y=1+2Zv+ 2Nt 205+ ... + ZUgyt €
Var(v) =Q,0;

Var(e) =/o?

in which the vector y represents the biomass values, Zis the design
matrix for random effects, vy, (to vy) or vy (to vey) (collectively desig-
nated v;) are the chromosome-specific genomic additive genetic effects
and eisthe residual. Matrices Q,are the chromosome-specific genomic
relationship matrices for the nine chromosomes of the Nand K subge-
nomes. Chromosome-specific and residual variances are ofi anda?,
respectively. Chromosome-specific heritability is h,i_ = (ofi /ag), and
subgenome-specific heritability is the sum of these variances across
the nine chromosomes within each subgenome.

Candidate gene exploration

We integrated multiple data structures to rank and provide meaning-
ful culling criteria for candidate genes within introgression intervals
and physical proximity to quantitative trait loci peaks. In the case of
GWAS peaks, candidate genes were defined as those loci withina 20-kb
interval surrounding the mashr peak. Candidate genes for genomic
introgressions must have at least partially overlapped the introgres-
sioninterval. Asinference of GWAS and introgressions were conducted
within genetic subpopulations, all statistics reported in Supplementary
Data7 (candidate genelists) are also subpopulation-specific, with the
exception of gene co-expression analysis (which was conducted only
onAP13 RNA-sequencing libraries used for annotation purposes (Sup-
plementary Data3)).Foragiveninterval, we present a set of statistics.
First, the physical proximity to the peak location was calculated as the
midpoint of the gene to the midpoint of the interval (introgression)
or GWAS peak position. Second, as the causal locus underlying GWAS
peaks withinasubpopulation must necessarily be variable within that
subpopulation, we extracted all SNPs withinand proximate to candidate
gene models. These variants were annotated with SNPeff'?® and the
weighted sum of three main categories of variants (high, moderate and
low; adescription of these can be found at https://pcingola.github.io/
SnpEff/se_inputoutput/#effect-prediction-details) for each gene were
calculated as SNPeff_score = high x 20 + moderate x 5+ low x 1. Third,
for each gene, we calculated the minor allele frequency of structural
and presence-absence variants. Fourth, we include a vector of the
identity of the WGCNA clusters for each gene. Finally, if the candidate
was a homologue of flowering-time GWAS candidate genes from a
previous publication'?”, the identity of the overlapping interval or gene
isincluded.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

SequenceRead Archive accession codes forallRNA and DNA sequencing
libraries canbe found in Supplementary Data3 and 4, respectively. The
v5AP13 genome has beendeposited at DDBJ/ENA/GenBank under theac
cession JABWAIOOO000000. The genome, gene and repeat annota-
tions can also be downloaded directly from Phytozome at https://
phytozome-next.jgi.doe.gov/info/Pvirgatum_v5_1. Whenever possible,

plant material will be shared upon request. Source data are provided
with this paper.

Code availability

Custom pipelines for GWAS and other analyses are available from data-
verse at https://doi.org/10.18738/T8/)377KE.
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e Genome annotation statistics
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Extended DataFig.1|Genome assembly and annotation. a-c, Genome
contiguity (a) and library coverage (b) demonstrate that the v5releaseisavery
complete genome and thatitisamong the best available plant reference
genomes (c), compared to maize'?® durum wheat'?’, broomcorn millet™’, teff™,
poplar'®, soybean’, cotton*, walnut’** and strawberry*®.d, Complete
collinearity between marker order inboth crosses (number of markers =4,701)
of a4-way mapping populationis evident. e, Genome annotation statistics

presentagene annotation thatis ascomplete asthe assembly. f, Observed
heterozygosity ranges from <4 to >10% among our 732-library resequencing
panel. g, Nearly the entire single-copy genome of P. halliiis syntenic with both
switchgrass subgenomes; pale blue polygons represent syntenic blocks
between subgenomes and P. hallii. The one exceptionis a previously known
over-retained regionrepresenting the p duplication on Chr. 03 and 08%*.
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a Summary of the 10 common gardens

d Neural network-based phenotypic classification
A

site ID altID latitude longitude n.genotypes survival (%) biomass (mean, kg)
TX1— KING 27.55 -97.881 275 98.2 1628.6 Ecotype
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IL — FRMI  41.837 -88.24 245 67.3 1288.2 (78:16%)
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b Climatic variation among common gardens
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Late January - early March were much colder
in the upper and western great plains than
the more eastern garden in Michigan.
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Extended DataFig.2|See next page for caption.
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Extended DataFig.2|Phenotypic and climatic gradientsamong common
gardens and ecotypes. a, The ten common gardens span much of the
geographical distribution of, and elicit very different phenotypic responses
among, our switchgrass diversity panel. For each garden, we present the
georeferenced location and some basic quantitative genetic attributes of the
plants grown there. b, Toillustrate the climate context of winter mortality, we
presentaseven-day rolling mean of minimum daily temperature across the
study period. Line colours match the colour keyina.c, Toinvestigate the
climatic attributes of each garden, we clustered 46 climatic variables from
WorldClim (variables are named biol-19%2) and ClimateNA* using the
georeferenced locations for the diversity panel; theidentifiers (left) and
description (right) accompany each row. These seven clusters, separated by
breaksinthe heat map, are represented by the seven climate variables that
most closely correlated with the first principal component eigenvector of each
cluster (labelledinbold).d, Toinvestigate ecotype evolution, we
probabilistically assigned each member of the diversity panel to one of three
ecotypes (Mypiand = 221, Neoasta = 157, Migyiana =129) using a set of morphological

(n=16 at2 gardens) and qualitative (n=2) phenotypes; the linear discriminant
functions that distinguish the ecotypesare presented here along with the
eigenvectors of the two qualitative ecotype categorizations. Each point
represents asingle genotypegrowninbothTX,and MIgardens (n=509).LDA,
linear discriminant analysis. e, Qualitative ecotype assessments from experts
arepresented for the TX,gardenin 2019. The y-axis scaleis ordinal with five
categories, but points arejittered so that the density of observationsis more
obvious. Points are coloured by neural network classification following d.f,
Loadings for the other 16 variables (across 2 gardens) are plotted on the same
scaleand axes asd. Todistinguish variables, we clustered eachinto one of four
groups, representing variationinleaf (dark green) (3), whole plant (red) (1) and
combinations of these. g, The table presents alegend for thelabelsinf,in which
eachvariable was measured inboth Mland TX, gardens. More detailed
descriptions of the phenotypes canbe foundin Supplementary Data 5. h, For
eachofthe seven climate variables, we corrected climate distance between the
collection site and each common garden. The quadratic model fit (r*) for each
variable and ecotype are presented.
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Extended DataFig. 3 | Population and quantitative genetic divergence
between and evolution within subpopulations and ecotypes. a, Pairwise
F-statistics between each subpopulation-by-ecotype combination and across
allecotypes foreachsubpopulation. b, Cross coalescence (RCCR) represents
analternative method to define divergence. Here, 16 bootstraps of RCCR
profiles were converted to generation time at which divergence occurred.
Statisticsacross thebootstrapsare presented. ¢, Linkage-disequilibrium
nonlinear function of physical distance and predicted correlation coefficients

among markers for the entire sample. The linear model prediction for each
500-bpintervalis plotted as black open points; 2-bp-intervalmean r* values are
thelight grey pointsinthe background. d-f, Population genetic structure is
displayed as the principal coordinates fromascaled and centred distance
matrix of structural variants (d), presence-absence variants (e) and SNPs (f),
colour-coded by subpopulation assignmentsin Fig.3.g, Positionsand -
log,o(Pvalues) of the top 2,000 GWAS hits are presented for 2 gardens, the
3subpopulations (coloured asind-f) and an overall run (black points).



a Subgenome bias of biomass heritability (N-K) by

subpopulation and garden

garden GULF  ATLANTIC MIDWEST OVERALL

b Subgenome bias statistics
annotated genes
PAV of 1:1 annotated genes

upregulated genes (TX2) nGenes

SD 0.107 0.048 upregulated genes (Overall)
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n. sig. GWAS hits (fitness ATLANTIC) 115 117 -0.009 0.020 0.025 0.030 0.08 009 0.10 0.1
n. sig. GWAS hits (fitness GULF) 5 4 0.111 . .
n. sig. GWAS hits (fitness MIDWEST) 54 40 0.149 e Overall expression bias
n. sig. GWAS hits (fitness Overall) 174 161 0.039 2000 genes - - - - - - - -
n. upregulated genes (Overall) 6,123 5,133 0.088
n. upregulated genes (MI) 5,315 4,402 0.094 1000 genes - - - - - - -
n. upregulated genes (TX2) 5,445 4,477 0.098
n. total annotated genes 40,957 38,712 0.028 . K> N: 27.80%
n. present genes (1:1 PAV with outgroups) 1,419 497 0.481 -2 0 2 4
mean synonymous subst. rate (ks)* 0.092 0.096 0.021 o log, FOIdTChange (KvN)
mean 4-fold tr ratio (4dtv)" 0.049 0.053 0.034 f Subfunctionalized gene expression bias
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*Variables where elevated values of N indicated K bias. These include the number of variable
sites and the rate of nucleotide substitutions, since stronger purifying selection should act

to reduce these.

Extended DataFig.4|Subgenome biases across DNA, expression and

quantitative traits. a, Difference in biomass SNP-heritability (k%) estimates

between subgenomes for each garden-by-subpopulation combination.

Garden-by-subpopulation combinations with empty cellsindicate that the
model did not converge. b, Subgenome bias for all sets of genome analyses

build b, with longer descriptions of the variables. d, Density distributions of
nonsynonymous (K,), synonymous (K;) and fourfold-degenerate transversion
substationrates (4DTv) for each subgenome relative to P. hallii. e, Summation
ofthe number of genesin each colour bin of f. f, Aheat map of expressionin
whichK>N (blue) and N>K (red) isshown for each tissuein the

conducted here. Coloursindicate the dataset used.c, Countsandratiosusedto  genome-annotation RNA-seq dataset.
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Extended Data Table 1| Heritability due to SNPs and
background kinship

subpopulation response SNP-h2 (+ SE)  polygenic background-h? (+ SE)
Atlantic  biomass_CLMB 56.67+22.6 22.64+7.3
Atlantic  biomass_KBSM 57.87+7.8 7.79+6.3
Atlantic  biomass_PKLE 55.63+7.5 7.49+5.3
Atlantic AHM 38.7+8.8 8.79+4.3
Atlantic bio2 NA NA
Atlantic bio4 82.91£17.1 17.09+7.6
Atlantic bio5 64.31+£33.7 33.73+10.4
Atlantic bio16 80.81+19.1 19.09+6.9
Atlantic bio17 94.13+4.9 4.88+2.9
Atlantic MAT 39.74£13.5 13.563+4.6
Gulf  biomass_CLMB 56.81+£1.2 1.16+£16.5
Gulf  biomass_KBSM 31.66+£11.2 11.25+¢12.7
Gulf  biomass_PKLE 27.84+23.3 23.35+13.2
Gulf AHM 57.42+39.8 39.79+17.8
Gulf bio2 51.16+47.7 47.65+19.9
Gulf bio4 69.03+31 30.97+19.6
Gulf bio5 79.67+18.3 18.26+18
Gulf bio16 38.66+61.3 61.29+15
Gulf bio17 57.35+42.6 42.57+17
Gulf MAT 58.16+1.1 1.06+11.2
Midwest  biomass_CLMB 48.12+28.9 28.91£10.9
Midwest  biomass_KBSM 67.72+32.3 32.28+6.4
Midwest  biomass_PKLE 61.563+29 28.98+6.7
Midwest AHM 66.67+9.4 9.42+2.5
Midwest bio2 96.34+2.8 2.76+1.6
Midwest bio4 69.03+31 30.97+£19.6
Midwest bios 98.17+1.4 1.38+0.8
Midwest bio16 98.29+1.6 1.6+1
Midwest bio17 97.78+2.2 2.16+1.2
Midwest MAT 72.03+2.1 2.06+1.1
Full  biomass_CLMB 49.44+6.3 6.3£5.8
Full  biomass_KBSM 44.04£0.2 0.21x4.7
Full biomass_PKLE 35.93+9.1 9.08+4.5
Full AHM 94.92+0.6 0.6+10.8
Full bio2 77.9+20.8 20.82+12.1
Full bio4 50.03+50 49.97+12.3
Full bios 36.65+62.2 62.24+10.5
Full bio16 76.95+23 22.99+11.8
Full bio17 90.96+9 8.95+7.5
Full MAT 41.46+33.3 33.32+9.1

Heritability of traits and climate-of-origin variation was partitioned to SNPs in GWAS hits
(‘SNP-h*) and background or polygenic variation. SNP-heritability and standard errors are
presented for each of seven climate variables, biomass in three gardens within and across
(‘full’) each of the subpopulations. Response variable-by-subpopulation combinations marked
with ‘NA’ indicate that the model did not converge.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection ~ DNA and RNA data were collected via Illumina and PacBio internal routines. All phenotype data was collected and input manually using best
practices for quantitative genetics data.

Data analysis All data analysis was conducted through programs described in the methods. The majority of which was accomplished in the R environment
for statistical computing. Other programs included: ancestry_hmm, vcftools, bcftools, samtools, varscan, PLINK, SHAPEIT, bwa-mem, Picard,
GATK, MSMC, GSNAP, HTSeq, Dialign-TX, Gblocks, mafft, orthofinder, Repeatmasker, RepeatModeler, PASA, EXONERATE, Jellyfish,
LTRHarvest, MECAT, BLAT, ARROW, and FlowJo. The GWAS pipeline developed here can be found on github (see code availability statement).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

SRA accession codes for all RNA and DNA sequencing libraries can be found in Supplemental Data 3 and 4 respectively. The v5 AP13 genome has be deposited at
DDBJ/ENA/GenBank under the accession JABWAIO00000000. The genome, gene and repeat annotations can also be downloaded directly from Phytozome: https://
phytozome-next.jgi.doe.gov/info/Pvirgatum_v5_1. With the exception of map layers (Fig. 2a, Fig. 3a), which are publicly available from naturalearth.org, raw data
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for all figures can be found in the source data file or associated tables in the extended data and supplementary material.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [ ] Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

S
Q
!
<
=
)
=
@
wn
)
QO
2
(@)
>
-
®
S,
o)
=
>
Q@
(%2
c
3
3
QO
S
<

Study description We conducted quantitative analysis of phenotypes, collected in common gardens, and gene expression, collected in both common
gardens and controlled conditions in the lab.

Research sample Panicum virgatum (switchgrass) plants represent the entirety of the study design. Individual genotypes were clonally replicated and
phenotyped in the field. Leaf and other tissue was assayed for gene expression. Replicated measures on a single individual plant were
collapsed to a breeding value and never used as a unit of replication in any analyses.

Sampling strategy Phenotyping was always conducted in a completely randomized design within blocks (common gardens).

Data collection Field data were collected by a team of field technicians. The identities of the field techs always accompanied the measurements and
care was taken to ensure that no systematic biases resulted from field technician factors.

Timing and spatial scale  Sample size was determined as a function of field experimental restrictions and sequencing cost. We sequenced 732 genotypes to
maximize diversity within a limited budget. These plants were grown in as many sites as possible. For some sites, there was not
enough space to grow all plants. In these cases, we chose plants that (a) represented the maximum genetic diversity and (b) had
enough clonal replicates available.

Data exclusions We discuss the libraries excluded in the methods. Some libraries were excluded due to poor sequencing quality or likely
contamination.

Reproducibility Plants were grown as clonal replicates. We opted for this approach (in lieu of full/half sib designs) to maximize repeatability: the
exact same genotypes can be grown in other experiments.

Randomization At each garden, planting was completely randomized in a single block.

Blinding All field experiments were conducted using genotype identifiers that do not have an obvious connection to the location, name, etc.
of each genotype. The anonymous 4- or 5-digit 'Library ID' was used for all statistical genomic analyses. It is impossible to conduct
analyses blind of these identifiers, since all data is entered and output along with the IDs; however, we took care to use only these
anonymous IDs and without direct reference to their biological names or context.

Did the study involve field work? [ Yes [ no

Field work, collection and transport

Field conditions Field conditions were ambient at 10 common gardens over two years. Daily rainfall, temperature and soil conditions can be made
available, but represent far too much data to place in this document. Summary climate data can be found in extended data figure 2.

Location Here are the georeferenced coordinates of the 10 common gardens:
BRKG: 44.30680(lat), -96.67050(lon)
CLMB: 38.89690(lat), -92.21780(lon)
FRMI: 41.83671(lat), -88.23960(lon)
KBSM: 42.41962(lat), -85.37127(lon)
KING: 27.54986(lat), -97.88101(lon)
LINC: 41.15430(lat), -96.41530(lon)
OVTN: 32.30290(lat), -94.97940(lon)
PKLE: 30.38398(lat), -97.72938(lon)
STIL: 35.99115(lat), -97.04649(lon)
TMPL: 31.04338(lat), -97.34950(lon)

Access & import/export  All plant collections were conducted either from established agricultural gardens under the managers permission, or from
collaborators under their own collecting permits.

Disturbance Collections of natural habitats were conducted with the utmost care by professional botanists following protocols outlined in the
collection permits. Common garden field sites were always constructed in previously disturbed or agricultural lands.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChlIP-seq
Eukaryotic cell lines |:| IZI Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
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Human research participants
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Flow Cytometry

Plots

Confirm that:
IXI The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|z| All plots are contour plots with outliers or pseudocolor plots.

|z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation 200-300 mg of young leaf tissue was macerated in a petri dish with a razor blade and treated for 15 minutes with 1mL
Cystain Pl Absolute P nuclei extraction buffer (Sysmex Flow Cytometry) mixed with 1uL 2-mercaptoethanol. Samples were
then filtered to isolate free nuclei with a CellTrics 30 um filter (Sysmex) and treated for 20 minutes on wet ice with 2mL of
Cystain Pl Absolute P staining buffer (Sysmex), 12uL of propidium iodide and 6ulL of RNase A

Instrument LSRFortessa SORP Flow Cytometer (BD Biosciences)

Software FlowJo software (BD Biosciences)

Cell population abundance NA

Gating strategy Samples were binned into three categories based upon the average units of fluorescence per nuclei. Ploidy level of the

sample was considered 4X if the cell population had 40-80K units of fluorescence, 6X for 80-100K units and 8X for 100-140K
units. The binning parameters were established with flow cytometry data from several P. virgatum accessions of known
ploidy. T

IXI Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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